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Quantum ratchet in a fractional kicked rotor
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Quantum dynamics of a fractional kicked rotor is considered. The Hamiltonian
of the system is

Ĥ = T̂ + ǫ cosx
∞∑

n=−∞

δ(t− n) , (1)

where ǫ is an amplitude of the periodic perturbation. The kinetic part of the
Hamiltonian is modeled by the fractional Weyl derivative T̂ = (−ih̃)αWα/α, where
h̃ is a dimensionless Planck constant, and α = 2 − β with 0 < β < 1. When β = 0,
Eq. (1) corresponds to the quantum kicked rotor. For a periodic function f(x) the
Fourier transform determines the fractional Weyl derivative Wα in the following
way (see [1], ch. 4.3)

Wαf(x) =

∞∑

n=−∞

(−ik)αf̄ke
−ikx . (2)

Thus, the kinetic term in the Hamiltonian (1) is defined on the basis |k〉 = eikx/
√

2π
as follows

T̂ |k〉 = T (k)|k〉 =
(h̃k)2−β

2 − β
|k〉 . (3)

This non-Hermitian operator has complex eigenvalues for k < 0, which are defined
on the complex plain with a cut, such that 1−β = 1 and (−1)−β = cosβπ− i sinβπ.

A quantum map for the wave function ψ(x, t + 1) = Ûψ(x, t) with an evolu-
tion operator Û on the period is studied numerically. A specific property of this
Hamiltonian dynamics is dissipation resulting in the probability leakage which is
described by the survival probability P (t). Another specific characteristic is the
non-zero mean value of the orbital momentum 〈p(t)〉. The first main result is the
quantum accelerator dynamics, 〈p(t)〉 ∼ tγ1 , which is accompanied by the power law
decay of the survival probability P (t) ∼ t−γ2 . Quantum localization affects strongly
both γ1 and γ2. By increase of the quantum effect, when h̃ = 1, the exponent γ1

approaches zero, and, as a result, a quantum ratchet like behavior takes place. The
survival probability decays at the rate γ2 ≈ 1.

The quantum–to classical transition is performed exactly. The classical Green
function

Kh̃=0
(x, p|x′p′) = Θ(p)δ(x− x′ − ω(p))δ(p− p′ − ǫ sinx′) (4)

corresponds to the classical map of the kicked rotor with the nonlinear frequency
ω(p) = p1−β for p > 0, while the absorbing boundary conditions for p < 0 are due
to the Heaviside function Θ(p).

The classical–to–quantum transition can be performed exactly, as well. There-
fore, the second result is that the fractional Schrödinger equation with the non–
Hermitian Hamiltonian (1) is the quantum counterpart of the open system in
Eq. (4).
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